ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Senate committee hears from energy secretary nominee Chris Wright
Wright
Chris Wright, president-elect Trump’s pick to lead the U.S. Department of Energy, spent hours today fielding questions from members of the U.S. Senate’s committee on Energy and Natural Resources.
During the hearing, Wright—who’s spent most of his career in fossil fuels—made comments in support of nuclear energy and efforts to expand domestic generation in the near future. Asked what actions he would take as energy secretary to improve the development and deployment of SMRs, Wright said: “It’s a big challenge, and I’m new to government, so I can’t list off the five levers I can pull. But (I’ve been in discussions) about how to make it easier to research, to invest, to build things. The DOE has land at some of its facilities that can be helpful in this regard.”
Clinton T. Ballinger, James A. Rathkopf, William R. Martin
Nuclear Science and Engineering | Volume 112 | Number 4 | December 1992 | Pages 283-295
Technical Paper | doi.org/10.13182/NSE92-A23978
Articles are hosted by Taylor and Francis Online.
A new method, response history Monte Carlo (RHMC), has been developed for solving electron transport problems through homogeneous material, and it is more accurate than the conventional method for energies below a few hundred kilo-electron-volts. Since electrons can suffer thousands of collisions and lose only a fraction of their incident energy, analog Monte Carlo (single scatter) is extremely time-consuming. The conventional electron transport method avoids simulating single scattering events by modeling the effect of multiple collisions. This condensed history method requires assumptions that are invalid at lower energies to analytically determine probability distribution functions (pdfs) representing the electron state after multiple collisions. Like the condensed history method, the RHMC method uses an approximate random walk where each step represents the cumulative effect of many collisions. However, the RHMC method is more accurate than the condensed history method since the multiscattered electron state is sampled from pdfs predetermined by analog Monte Carlo calculations instead of approximate analytic solutions.