ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Illinois legislature lifts ban on nuclear energy, funds clean energy
The Illinois General Assembly passed a clean energy bill on October 30 that would, in part, lift a 30-year moratorium on new nuclear energy in the state and create incentives for more energy storage.
Yoshihiko Kaneko, Fujiyoshi Akino, Yoshiro Suzuoki, Kenji Kitadate, Ryosuke Kurokawa,Kinji Koyama
Nuclear Science and Engineering | Volume 55 | Number 1 | September 1974 | Pages 105-116
Technical Note | doi.org/10.13182/NSE74-A23974
Articles are hosted by Taylor and Francis Online.
Neutron diffusion coefficients were measured in square lattices of aluminum channels in light water in both the axial and the radial directions by the pulsed neutron technique. The diameter of the channels was 15 mm and the pitch of the lattice was 19 or 24 mm. Good agreement was observed between the experimental values of the axial diffusion coefficient, Da, and those calculated by the two-dimensional discrete Sn method. In this calculation, the value of the diffusion coefficient was interpreted as the slope of the decay constant as a function of the geometrical buckling in the axial direction of the channels. Also, the measured values of the radial diffusion coefficients agreed well with those calculated by the well-known Benoist practical formulas. The relation between the extrapolation distance and the effective transport length in the axial direction, ℓa and 3Da/V was numerically investigated. The ratio of the former to the latter is found to be considerably higher than the value of 0.71 used hitherto.