ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Yinlu Han
Nuclear Science and Engineering | Volume 146 | Number 1 | January 2004 | Pages 106-119
Technical Paper | doi.org/10.13182/NSE04-A2397
Articles are hosted by Taylor and Francis Online.
Through experimental data of total, nonelastic scattering, elastic scattering cross sections, and elastic scattering angular distributions of Sn, a set of neutron optical model potential parameters is obtained. All reaction cross sections, angular distributions, energy spectra, gamma-ray production cross sections, gamma-ray production energy spectra, especially, the double-differential cross section for neutron, proton, deuteron, triton, and alpha emission, and inelastic scattering cross sections and inelastic scattering angular distributions for low-lying residual nucleus states are calculated and analyzed for n + 112,114-120,122,124,natSn at incident neutron energies from 0.1 to 20 MeV based on measured data and the nuclear model theory, which are an optical, semiclassical model of multistep nuclear reaction processes and distorted-wave Born approximation theory. Theoretical calculations are compared with existing experimental data and other evaluated data from JENDL-3.