ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
Yinlu Han
Nuclear Science and Engineering | Volume 146 | Number 1 | January 2004 | Pages 106-119
Technical Paper | doi.org/10.13182/NSE04-A2397
Articles are hosted by Taylor and Francis Online.
Through experimental data of total, nonelastic scattering, elastic scattering cross sections, and elastic scattering angular distributions of Sn, a set of neutron optical model potential parameters is obtained. All reaction cross sections, angular distributions, energy spectra, gamma-ray production cross sections, gamma-ray production energy spectra, especially, the double-differential cross section for neutron, proton, deuteron, triton, and alpha emission, and inelastic scattering cross sections and inelastic scattering angular distributions for low-lying residual nucleus states are calculated and analyzed for n + 112,114-120,122,124,natSn at incident neutron energies from 0.1 to 20 MeV based on measured data and the nuclear model theory, which are an optical, semiclassical model of multistep nuclear reaction processes and distorted-wave Born approximation theory. Theoretical calculations are compared with existing experimental data and other evaluated data from JENDL-3.