ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
S. R. Bierman, E. D. Clayton
Nuclear Science and Engineering | Volume 55 | Number 1 | September 1974 | Pages 58-66
Technical Paper | doi.org/10.13182/NSE74-A23966
Articles are hosted by Taylor and Francis Online.
There has been considerable interest in the use of fixed neutron absorbers (poisons) for criticality control since their use would permit safely handling larger quantities of nuclear materials with reduced probability of criticality. The effectiveness of such absorbers as neutron poisons depends on self-shielding effects which in turn are determined by the magnitude of the absorption cross sections and their variation with energy, the thickness of material, and the neutron-energy spectrum. For the fixed poisons to be considered as either a primary or secondary means of criticality control, their use must be based on a firm knowledge of these effects. To obtain experimental data in this area, the reactivity worth of two such materials, copper and copper containing 1 wt% cadmium, was recently measured in two different energy spectrums and at different thicknesses up to ≈2½ cm. The results of these measurements are presented in this paper and provide a set of clean, well-defined, poisoned critical assemblies that can be used to check calculational techniques and cross-section data., In the relatively thermalizwd neutron-energy spectrum, very little additional absorption was observed in the copper plate at thicknesses greater than ≈2½ cm or in the copper-cadmium plate at thicknesses greater than 1 cm. At thicknesses greater than these, self-shielding precluded any additional absorption, and the change in reactivity was due almost entirely to the additional void being introduced into the system by the poison plates., In the relatively fast neutron energy spectrum, neutron absorption was observed to continually increase with plate thickness for both sets of plates. However, in this spectrum the void effects, caused by the presence of the poison plates, had a greater reactivity worth, over the thickness range covered, than the neutron absorption., In either spectrum, the 1 wt% cadmium in the copper contributed significantly to the neutron absorption. Of course, the cadmium was found to be worth much more in the thermalized spectrum.