ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Canada begins regulatory approval process for spent fuel repository
Canada has formally initiated the regulatory process of licensing its proposed deep geological repository for spent nuclear fuel, with the country’s Nuclear Waste Management Organization (NWMO) announcing that it has submitted an initial project description to the Canadian government.
According to the NWMO, the initial project description is a foundational document, detailing the repository’s purpose, need, and expected benefits and explaining how the project will be implemented. It also provides a preliminary assessment of potential impacts and describes measures to avoid or mitigate them. The NWMO is the not-for-profit organization responsible for managing Canada’s nuclear waste.
H. B. Choi, T. J. Downar
Nuclear Science and Engineering | Volume 111 | Number 2 | June 1992 | Pages 205-213
Technical Note | doi.org/10.13182/NSE92-A23934
Articles are hosted by Taylor and Francis Online.
Depletion perturbation theory has been extended to the closed nuclear fuel cycle, and methods have been developed for computing the constrained sensitivities that account for fuel reprocessing and fabrication. An iterative method was developed to solve the sensitivity equations and applied to the closed fuel cycle of the Integral Fast Reactor (IFR). The sensitivities computed using the method were in good agreement with sensitivities from direct subtraction of perturbed and unperturbed depletion calculations. The closed fuel cycle sensitivities were also compared with the sensitivities for the open fuel cycle without reprocessing. The closed fuel cycle sensitivities were found to be larger, particularly for isotopes higher up the burnup chain. These results indicate this work would have particular importance for the analysis of advanced reactor designs with closed fuel cycles, such as the IFR. The methods developed here will facilitate accurate and efficient sensitivity studies of such reactors.