ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
ARG-US Remote Monitoring Systems: Use Cases and Applications in Nuclear Facilities and During Transportation
As highlighted in the Spring 2024 issue of Radwaste Solutions, researchers at the Department of Energy’s Argonne National Laboratory are developing and deploying ARG-US—meaning “Watchful Guardian”—remote monitoring systems technologies to enhance the safety, security, and safeguards (3S) of packages of nuclear and other radioactive material during storage, transportation, and disposal.
Jeffrey A. Favorite
Nuclear Science and Engineering | Volume 146 | Number 1 | January 2004 | Pages 51-70
Technical Paper | doi.org/10.13182/NSE02-96
Articles are hosted by Taylor and Francis Online.
A new iterative inverse method for gamma-ray transport problems is presented. The method, based on a novel application of the Schwinger variational functional, is developed as a perturbation problem in which the current model (in the iterative process) is considered the initial, unperturbed system, and the actual model is considered the perturbed system. The new method requires the solution of a set of uncoupled one-group forward and adjoint transport equations in each iteration. Four inverse problems are considered: determination of (a) interface locations in a multilayer source/shield system, (b) the isotopic composition of an unknown source (including inert elements), (c) interface locations and the source composition simultaneously, and (d) the composition of an unknown layer in the shield. Only the first two problems were actually solved in numerical one-dimensional (spherical) test cases. The method worked well for the unknown interface location problem and extremely well for the unknown source composition problem. Convergence of the method was heavily dependent on the initial guess.