ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Jeffrey A. Favorite
Nuclear Science and Engineering | Volume 146 | Number 1 | January 2004 | Pages 51-70
Technical Paper | doi.org/10.13182/NSE02-96
Articles are hosted by Taylor and Francis Online.
A new iterative inverse method for gamma-ray transport problems is presented. The method, based on a novel application of the Schwinger variational functional, is developed as a perturbation problem in which the current model (in the iterative process) is considered the initial, unperturbed system, and the actual model is considered the perturbed system. The new method requires the solution of a set of uncoupled one-group forward and adjoint transport equations in each iteration. Four inverse problems are considered: determination of (a) interface locations in a multilayer source/shield system, (b) the isotopic composition of an unknown source (including inert elements), (c) interface locations and the source composition simultaneously, and (d) the composition of an unknown layer in the shield. Only the first two problems were actually solved in numerical one-dimensional (spherical) test cases. The method worked well for the unknown interface location problem and extremely well for the unknown source composition problem. Convergence of the method was heavily dependent on the initial guess.