ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
DOE signs two more OTAs in Reactor Pilot Program
This week, the Department of Energy has finalized two new other transaction agreements (OTAs) with participating companies in its Reactor Pilot Program, which aims to get one or two fast-tracked reactors on line by July 4 of this year. Those companies are Terrestrial Energy and Oklo.
W. S. Yang, P. J. Finck, H. Khalil
Nuclear Science and Engineering | Volume 111 | Number 1 | May 1992 | Pages 21-33
Technical Paper | doi.org/10.13182/NSE92-A23920
Articles are hosted by Taylor and Francis Online.
A reconstruction method is developed for recovering pin burnup characteristics from fuel cycle calculations performed in hexagonal-z geometry using the nodal diffusion option of the DIF3D/REBUS-3 code system. Intranodal distributions of group fluxes, nuclide densities, power density, burnup, and fluence are efficiently computed using polynomial shapes constrained to satisfy nodal information. The accuracy of the method is tested by performing several fast reactor numerical benchmark calculations and by comparing predicted local burnups with values measured for experimental assemblies in the Experimental Breeder Reactor II. The results indicate that the reconstruction methods are quite accurate yielding maximum errors in power and nuclide densities that are <2% for driver assemblies and typically <5% for blanket assemblies.