ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
D. Rozon, M. Beaudet
Nuclear Science and Engineering | Volume 111 | Number 1 | May 1992 | Pages 1-20
Technical Paper | doi.org/10.13182/NSE92-A23919
Articles are hosted by Taylor and Francis Online.
A nonlinear optimization method based on first-order generalized perturbation theory (GPT) and mathematical programming has been extended to three dimensions in the code OPTEX and applied to a realistic problem in the physics design of Canada deuterium uranium (CANDU) reactors. The choice of three-dimensional linear GPT for computing the cost coefficients is justified, and the optimization approach is discussed in reference to methods used for light water reactor fuel manage-ment. The design problem consists of simultaneously adjusting the fueling rate distribution and the grading of the adjuster rods in the core, while satisfying limits on the maximum bundle and channel powers at full power equilibrium refueling. Passage to three dimensions is a requirement for a real-istic modeling of equilibrium refueling in CANDU. It has a significant effect on the system equations, which become nonlinear with the inclusion of the axial dimension. The nature of the constraints is also affected: Separate limits on channel and bundle powers must now be accounted for. These problems are addressed, and a practical optimization scheme is proposed that can handle realistic CANDU core and fuel management design problems.