ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
John A. Bernard, David D. Lanning
Nuclear Science and Engineering | Volume 110 | Number 4 | April 1992 | Pages 425-444
Technical Paper | doi.org/10.13182/NSE92-A23916
Articles are hosted by Taylor and Francis Online.
Factors relevant to the design and implementation of digital controllers for research reactors are discussed with emphasis on the rationale for incorporating a system model in the control law. For this purpose, proportional-integral-derivative and period-generated control are compared. The latter is a model-based technique that achieves excellent trajectory tracking of nonlinear systems. It does this by combining feedback and feedforward control action in a manner that cancels the effects of the system’s dynamics on the controller’s performance. Model-based control is also superior in that it permits replication of some of the functions that humans perform when exercising control. In particular, models can be used to predict expected plant response and thereby facilitate diagnosis. The importance of validated signals, supervisory algorithms, properly designed man-machine interfaces, and automated diagnostics are discussed in relation to control law implementation. In addition, a summary is provided of reactor dynamics as related to control, and arguments are presented in support of using the rate of change of reactivity as the actuator signal. Experimental results obtained from trials of digital controllers on both the 5-MW(thermal) Massachusetts Institute of Technology Research Reactor and the Annular Core Research Reactor that is operated by Sandia National Laboratories are included.