ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Per Seltborg, Jan Wallenius, Kamil Tucek, Waclaw Gudowski
Nuclear Science and Engineering | Volume 145 | Number 3 | November 2003 | Pages 390-399
Technical Paper | doi.org/10.13182/NSE03-A2390
Articles are hosted by Taylor and Francis Online.
In order to study the beam power amplification of an accelerator-driven system (ADS), a new parameter, the proton source efficiency * is introduced. * represents the average importance of the external proton source, relative to the average importance of the eigenmode production, and is closely related to the neutron source efficiency [varphi]*, which is frequently used in the ADS field. [varphi]* is commonly used in the physics of subcritical systems driven by any external source (spallation source, (d,d), (d,t), 252Cf spontaneous fissions, etc.). On the contrary, * has been defined in this paper exclusively for ADS studies where the system is driven by a spallation source. The main advantage with using * instead of [varphi]* for ADS is that the way of defining the external source is unique and that it is proportional to the core power divided by the proton beam power, independent of the neutron source distribution.Numerical simulations have been performed with the Monte Carlo code MCNPX in order to study * as a function of different design parameters. It was found that, in order to maximize * and therefore minimize the proton current needs, a target radius as small as possible should be chosen. For target radii smaller than ~30 cm, lead-bismuth is a better choice of coolant material than sodium, regarding the proton source efficiency, while for larger target radii the two materials are equally good. The optimal axial proton beam impact was found to be located ~20 cm above the core center. Varying the proton energy, */Ep was found to have a maximum for proton energies between 1200 and 1400 MeV. Increasing the americium content in the fuel decreases * considerably, in particular when the target radius is large.