ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
T. F. Wimett
Nuclear Science and Engineering | Volume 110 | Number 3 | March 1992 | Pages 209-236
Technical Paper | doi.org/10.13182/NSE90-149
Articles are hosted by Taylor and Francis Online.
Large dynamic stresses are induced in the fuel components of fast-burst, or pulse, reactors because of rapid fission heating. These stresses increase more than linearly with burst energy yield and, at some yield, will cause fuel failure. Despite many attempts, no one has yet succeeded in predicting a fuel damage threshold with useful certainty in the reactor design stage, nor has the maximum fuel stress for a given power pulse in an operating reactor been calculated satisfactorily. Some analytic solutions for the burst dynamic behavior of typical fuel components that are consistent with available fuel displacement measurements are discussed. In particular, an analytic function is introduced for stress-vibration excitation of fuel components by the bell-shaped power pulse of a reactor burst. These solutions can be employed to determine fuel damage thresholds with useful certainty. Also, a new approach is presented for the analysis of prompt burst power transients by employing fuel displacement solutions to derive dynamic reactivity quench for use in power calculations.