ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
Nasir M. Mirza, K. O. Ott
Nuclear Science and Engineering | Volume 110 | Number 2 | February 1992 | Pages 168-176
Technical Notes | doi.org/10.13182/NSE92-A23886
Articles are hosted by Taylor and Francis Online.
There is a problem in the neutron flux calculation in regions with a strong spectral transition from epithermal toward thermal. Space-dependent group constants are developed for the thermal range to treat the highly nonseparable space- and energy-dependent flux distribution that characterizes the transition of fast neutron spectra into partially thermalized spectra. The weighting spectra are obtained from a parametric application of the heavy gas model for scattering with absorption cross sections that include the resonances near and below 1 eV. A space dependence is introduced into weighting spectra by relating the parametric solution of the zero-dimensional spectral equation to thermal and epithermal group fluxes obtained from a prior one-dimensional diffusion calculation. Subsequently, space-dependent thermal group constants are generated. The method is implemented in a standard multigroup diffusion code, executed iteratively. This procedure was applied to compact liquid-metal reactor designs having thermalizing reflector regions. The results indicate the effect of global parameters such as the size of the thermalizing reflector on the group constants, which are considerably different from the classical local group constants.