ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
W. L. Dunn, A. M. Yacout, F. O′Foghludha
Nuclear Science and Engineering | Volume 110 | Number 2 | February 1992 | Pages 134-156
Technical Papers | doi.org/10.13182/NSE92-A23883
Articles are hosted by Taylor and Francis Online.
Gamma-ray and neutron dose-equivalent buildup factors are calculated for six common shielding materials in a point-source, infinite-slab, point-detector geometry using a decomposition of the solution to the transport problem into single- and multiple-scatter components. A rigorous solution for the single-scatter component is constructed and a Monte Carlo model for the multiple-scatter component is employed. Simplified models are fit to the calculated buildup factors as functions of slab thickness and source-detector separation, and model constants are evaluated for each of several source energies. Single-scatter and total slab buildup factors are presented, both in tabular form and in graphs that also show the fitted models, for six materials. The models are demonstrated for a sample problem.