ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
W. L. Dunn, A. M. Yacout, F. O′Foghludha
Nuclear Science and Engineering | Volume 110 | Number 2 | February 1992 | Pages 134-156
Technical Papers | doi.org/10.13182/NSE92-A23883
Articles are hosted by Taylor and Francis Online.
Gamma-ray and neutron dose-equivalent buildup factors are calculated for six common shielding materials in a point-source, infinite-slab, point-detector geometry using a decomposition of the solution to the transport problem into single- and multiple-scatter components. A rigorous solution for the single-scatter component is constructed and a Monte Carlo model for the multiple-scatter component is employed. Simplified models are fit to the calculated buildup factors as functions of slab thickness and source-detector separation, and model constants are evaluated for each of several source energies. Single-scatter and total slab buildup factors are presented, both in tabular form and in graphs that also show the fitted models, for six materials. The models are demonstrated for a sample problem.