ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NRC’s hybrid AI workshop coming up
The Nuclear Regulatory Commission will host a hybrid public workshop on September 24 from 9 a.m.-5 p.m. Eastern time to discuss its activities for the safe and secure use of artificial intelligence in NRC-regulated activities.
Yoichi Watanabe, Jacob Appelbaum, Isaac Maya
Nuclear Science and Engineering | Volume 110 | Number 2 | February 1992 | Pages 109-127
Technical Papers | doi.org/10.13182/NSE92-A23881
Articles are hosted by Taylor and Francis Online.
The combination of a gaseous core fission reactor with a magnetohydrodynamic (MHD) generator can lead to more efficient conversion of fission energy to electricity than can conventional conversion systems. A system concept currently being investigated utilizes uranium tetrafluoride (UF4) as fuel and potassium or potassium fluoride (KF) as the working fluid. The electrical conductivity of the gas greatly influences the performance of the MHD generator. It is possible to enhance the electrical conductivity by taking advantage of fission fragment ions born in the fissile gas-working gas mixture. To study and quantify this effect, a chemical reaction model as well as a physical model are developed. The governing rate equations and an electron energy balance equation are numerically solved for steady-state and spatially homogeneous cases. The electrical conductivity of a UF4-K/KF gaseous mixture is shown to be a function of neutron flux at representative gas conditions (2500 K and 1 atm). The enhancement is achieved because of the rise in electron temperature due to fission fragment heating.