ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
ARG-US Remote Monitoring Systems: Use Cases and Applications in Nuclear Facilities and During Transportation
As highlighted in the Spring 2024 issue of Radwaste Solutions, researchers at the Department of Energy’s Argonne National Laboratory are developing and deploying ARG-US—meaning “Watchful Guardian”—remote monitoring systems technologies to enhance the safety, security, and safeguards (3S) of packages of nuclear and other radioactive material during storage, transportation, and disposal.
Linda D. Vickers
Nuclear Science and Engineering | Volume 145 | Number 3 | November 2003 | Pages 354-375
Technical Paper | doi.org/10.13182/NSE03-A2388
Articles are hosted by Taylor and Francis Online.
This paper provides the radiation absorbed dose rates (rad-h-1) to a tissue-equivalent torus ring at 1 meter from radioactive spallation products in Ta, W, Pb, Bi, and LBE target materials used in Accelerator Transmutation of Waste (ATW) applications. No previous works have provided an estimate of the absorbed dose rates (rad-h-1) to tissue from activated targets for ATW applications. In addition, this paper provides the characterization of target materials of high-energy particle accelerators for the parameters of (a) spallation neutron yield (neutrons/proton), (b) spallation products yield (nuclides/proton), (c) energy-dependent spallation neutron fluence distribution (n-cm-2 MeV-1), and (d) identification of the optimal target dimensions to yield the maximum radial spallation neutron leakage from the target. A beneficial characteristic of these target materials (Ta, W, Pb, Bi, and LBE) is they do not produce radioactive transuranic isotopes, which have very long half-lives and require special handling and disposition controls. In addition, these activated, spent targets are not considered high-level radioactive waste for disposal purposes such as spent fuel from a nuclear power reactor.