ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Linda D. Vickers
Nuclear Science and Engineering | Volume 145 | Number 3 | November 2003 | Pages 354-375
Technical Paper | doi.org/10.13182/NSE03-A2388
Articles are hosted by Taylor and Francis Online.
This paper provides the radiation absorbed dose rates (rad-h-1) to a tissue-equivalent torus ring at 1 meter from radioactive spallation products in Ta, W, Pb, Bi, and LBE target materials used in Accelerator Transmutation of Waste (ATW) applications. No previous works have provided an estimate of the absorbed dose rates (rad-h-1) to tissue from activated targets for ATW applications. In addition, this paper provides the characterization of target materials of high-energy particle accelerators for the parameters of (a) spallation neutron yield (neutrons/proton), (b) spallation products yield (nuclides/proton), (c) energy-dependent spallation neutron fluence distribution (n-cm-2 MeV-1), and (d) identification of the optimal target dimensions to yield the maximum radial spallation neutron leakage from the target. A beneficial characteristic of these target materials (Ta, W, Pb, Bi, and LBE) is they do not produce radioactive transuranic isotopes, which have very long half-lives and require special handling and disposition controls. In addition, these activated, spent targets are not considered high-level radioactive waste for disposal purposes such as spent fuel from a nuclear power reactor.