ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Senate committee hears from energy secretary nominee Chris Wright
Wright
Chris Wright, president-elect Trump’s pick to lead the U.S. Department of Energy, spent hours today fielding questions from members of the U.S. Senate’s committee on Energy and Natural Resources.
During the hearing, Wright—who’s spent most of his career in fossil fuels—made comments in support of nuclear energy and efforts to expand domestic generation in the near future. Asked what actions he would take as energy secretary to improve the development and deployment of SMRs, Wright said: “It’s a big challenge, and I’m new to government, so I can’t list off the five levers I can pull. But (I’ve been in discussions) about how to make it easier to research, to invest, to build things. The DOE has land at some of its facilities that can be helpful in this regard.”
J. E. Woollard, T. E. Blue, J. F. Curran, M. C. Dobelbower, H. R. Busby, R. F. Barth
Nuclear Science and Engineering | Volume 110 | Number 1 | January 1992 | Pages 96-103
Technical Paper | doi.org/10.13182/NSE92-A23879
Articles are hosted by Taylor and Francis Online.
Boron neutron capture therapy (BNCT) is an experimental radiation therapy that is being developed for the treatment of malignant tumors. One requirement for successful BNCT is that a sufficient amount of 10B concentrates in the tumor while clearing from normal tissues and blood. Many pharmaceuticals are currently being developed to selectively deliver 10B to a tumor. To evaluate the effectiveness of various 10B delivery agents, the concentrations of boron in blood, tumor, and normal tissues must be known. Using the solid-state nuclear track detector CR-39, a tissue assay technique has been developed to spatially determine 10B concentrations in tissue samples. The technique has been used to quantify 10B concentrations in tumor and normal tissue on lines across rat brain tissue sections. This was done by combining 10B concentrations measured on lines across the CR-39 with color digital images of the tissue section. Coupling the methodology that was developed for tissue samples with an existing analytical technique for blood-10B concentration measurements allows for complete evaluation of 10B distributions in blood, tumor, and normal tissues and should be useful in evaluating various 10B delivery agents for use in BNCT.