ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
Kazuo Shin, Yoshiaki Ishii, Kagetomo Miyahara, Yoshitomo Uwamino, Hideyuki Sakai, Sigeo Numata
Nuclear Science and Engineering | Volume 109 | Number 4 | December 1991 | Pages 380-390
Technical Paper | doi.org/10.13182/NSE91-A23863
Articles are hosted by Taylor and Francis Online.
Spectral measurements of intermediate-energy neutrons (i.e., En ≤ 65 MeV) transmitted through iron, lead, graphite, and concrete shields are described. Concurrently, transmitted spectra of associated gamma rays are also obtained. A collimated beam of neutrons induced by 65-MeV protons in a thick copper target is utilized in the measurements. Measurements of both neutrons and gamma rays penetrating the shields are by an NE-213 scintillator. Monte Carlo calculations using the MORSE code are carried out with the DLC-87 Hilo multigroup cross sections. For neutron spectra, comparison between the measured and calculated spectra indicates that the DLC-87 data reproduce the measured data well for the graphite and the concrete shields but give only slightly higher values at energies of 15 to 30 MeV for the iron shield and overpredict the lead-transmitted spectra. Tests on the cross sections reveal that the underestimation of the total iron cross section by the DLC-87 in the 15- to 25-MeV energy range is the reason for the overestimation of the iron transmitted spectra. Neglecting the elastic scattering in evaluating the lead data is the reason for the large overestimation of the lead transmitted spectra. Gamma-ray spectra obtained behind the graphite and concrete shields are well explained by the transmission of source gamma rays from the copper target through the shields. However, the intensity of the measured photons behind iron and lead shields is much larger than that of transmitted source photons. The discrepancies are not explained by including neutron-induced gamma rays for neutrons from thermal energy up to 15 MeV. The gamma-ray production cross-section data may be required for neutrons >15 MeV to explain the remaining large discrepancies.