ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
ARG-US Remote Monitoring Systems: Use Cases and Applications in Nuclear Facilities and During Transportation
As highlighted in the Spring 2024 issue of Radwaste Solutions, researchers at the Department of Energy’s Argonne National Laboratory are developing and deploying ARG-US—meaning “Watchful Guardian”—remote monitoring systems technologies to enhance the safety, security, and safeguards (3S) of packages of nuclear and other radioactive material during storage, transportation, and disposal.
Andreas Pautz, Adolf Birkhofer
Nuclear Science and Engineering | Volume 145 | Number 3 | November 2003 | Pages 299-319
Technical Paper | doi.org/10.13182/NSE03-A2385
Articles are hosted by Taylor and Francis Online.
A new neutron transport code for time-dependent analyses of nuclear systems has been developed. The code DORT-TD is based on the well-known Discrete Ordinates code DORT, which solves the steady-state neutron transport equation in two dimensions for an arbitrary number of energy groups and standard regular geometries. For the implementation of time-dependence, a fully implicit, unconditionally stable time integration scheme was employed to minimize errors due to temporal discretization. This requires several modifications to the transport equation and the extensive use of sophisticated acceleration mechanisms. The convergence criteria for fluxes and fission densities had to be strongly tightened to ensure the reliability of results. We also allowed for cross sections varying with time to couple neutronics and thermal hydraulics calculations. The neutronics code was finally applied to a research reactor to show its capabilities for both slow and fast transients.