ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
J. K. Dickens
Nuclear Science and Engineering | Volume 109 | Number 1 | September 1991 | Pages 92-102
Technical Note | doi.org/10.13182/NSE91-A23847
Articles are hosted by Taylor and Francis Online.
Recently obtained experimental total beta-ray spectra for 77 radionuclides created during fission of 235U are compared with predicted total beta-ray spectra based on beta-ray transition energies and intensities of individual components currently available in the Evaluated Nuclear Structure Data File (ENSDF). In addition, experimental average beta-ray energies <Eβ> for 100 radionuclides are compared with evaluated/theoretical <Eβ> from four compilations, namely, (a) a 1982 compilation, (b) the 1989 and current ENSDF, (c) a 1988 compilation by the Japanese Nuclear Data Committee, and (d) predictions using the microscopic theory of Klapdor and Metzinger. None of these evaluations/ predictions is superior in reproducing the experimental data. A comparison of the experimental <Eβ> with the total available beta decay energies Qβ indicates that the approximation <Eβ> ≈ Qβ/3 somewhat overestimates <Eβ> on the average; however, the ratio R = <Eβ>/Qβ varies between 0.11 and 0.46, and there is no discernible trend in R compared with Qβ or <Eβ> nor a discernible difference for radionuclides having T1/2 ≤ 2 s compared with those having T1/2 > 2 s. Lastly, the intensities of possible ground-state decay transitions were estimated for 47 radionuclides and compared with similar data in ENSDF. In 14 cases, a nonzero ENSDF value is supported by the experimental data, and in 8 cases a zero value in ENSDF is supported by the lack of experimental data suggesting a high-energy ground state beta-ray transition. Of the remaining 25 radionuclides, the experimental data for 9 cases suggest that increases are needed in the ENSDF, and for 16 radionuclides the data indicate the need for smaller values of the ground-state transition intensities from those given in the ENSDF, being zero for 4 nuclides (80,81Ga, 84As, and 145Cs).