ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
Robert P. Rulko, Edward W. Larsen, G. C. Pomraning
Nuclear Science and Engineering | Volume 109 | Number 1 | September 1991 | Pages 76-85
Technical Note | doi.org/10.13182/NSE91-A23845
Articles are hosted by Taylor and Francis Online.
The PN theory has been shown to be an asymptotic limit of transport theory for problems in optically thick planar-geometry media with low absorption rates and highly anisotropic scattering. Transport problems that lie outside the asymptotic regime of validity of PN theory are considered. Such problems occur in media that are either optically thin, or contain isotropic or mildly anisotropic scattering, or are not weakly absorbing. For such problems, the accuracy of numerical solutions of the PN equations obtained using the asymptotic boundary conditions is demonstrated. These numerical solutions are compared with others obtained using various familiar boundary conditions. Solutions obtained using the asymptotic boundary conditions are always competitive with, and often superior to, solutions obtained using these other boundary conditions.