ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
K. Y. Suh, R. J. Hammersley
Nuclear Science and Engineering | Volume 109 | Number 1 | September 1991 | Pages 26-38
Technical Paper | doi.org/10.13182/NSE91-A23842
Articles are hosted by Taylor and Francis Online.
Best-estimate calculations of realistic source terms are presented that reduce uncertainties in predicting volatile fission product release from the UO2 fuel over the temperature range from 770 to 2500 K. The proposed method of correlation includes such fuel morphology effects as equiaxed fuel grain growth and fuel/cladding interaction. The method correlates the product of fuel release rate and equiaxed grain size with the inverse fuel temperature to yield a bulk mass transfer correlation. It is found that fewer and slower releases are predicted utilizing the bulk mass transfer correlation than with the steam oxidation model and the U.S. Nuclear Regulatory Commission’s NUREG-0956 correlation. Computational modules are developed to perform the thermal-hydraulic and fission product calculations needed to analyze the severe fuel damage tests. The predictions utilizing the bulk mass transfer correlations overall follow the experimental time-release histories during the heatup, power hold, and cooldown phases of the transients. Good agreements are achieved for the integral releases both in timing and in magnitude. The proposed bulk mass transfer correlations can be applied to both current and advanced light water reactor fuels.