ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Senate committee hears from energy secretary nominee Chris Wright
Wright
Chris Wright, president-elect Trump’s pick to lead the U.S. Department of Energy, spent hours today fielding questions from members of the U.S. Senate’s committee on Energy and Natural Resources.
During the hearing, Wright—who’s spent most of his career in fossil fuels—made comments in support of nuclear energy and efforts to expand domestic generation in the near future. Asked what actions he would take as energy secretary to improve the development and deployment of SMRs, Wright said: “It’s a big challenge, and I’m new to government, so I can’t list off the five levers I can pull. But (I’ve been in discussions) about how to make it easier to research, to invest, to build things. The DOE has land at some of its facilities that can be helpful in this regard.”
K. Y. Suh, R. J. Hammersley
Nuclear Science and Engineering | Volume 109 | Number 1 | September 1991 | Pages 26-38
Technical Paper | doi.org/10.13182/NSE91-A23842
Articles are hosted by Taylor and Francis Online.
Best-estimate calculations of realistic source terms are presented that reduce uncertainties in predicting volatile fission product release from the UO2 fuel over the temperature range from 770 to 2500 K. The proposed method of correlation includes such fuel morphology effects as equiaxed fuel grain growth and fuel/cladding interaction. The method correlates the product of fuel release rate and equiaxed grain size with the inverse fuel temperature to yield a bulk mass transfer correlation. It is found that fewer and slower releases are predicted utilizing the bulk mass transfer correlation than with the steam oxidation model and the U.S. Nuclear Regulatory Commission’s NUREG-0956 correlation. Computational modules are developed to perform the thermal-hydraulic and fission product calculations needed to analyze the severe fuel damage tests. The predictions utilizing the bulk mass transfer correlations overall follow the experimental time-release histories during the heatup, power hold, and cooldown phases of the transients. Good agreements are achieved for the integral releases both in timing and in magnitude. The proposed bulk mass transfer correlations can be applied to both current and advanced light water reactor fuels.