ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
C. Y. Fu
Nuclear Science and Engineering | Volume 109 | Number 1 | September 1991 | Pages 18-25
Technical Paper | doi.org/10.13182/NSE91-A23841
Articles are hosted by Taylor and Francis Online.
Pairing corrections in particle-hole (exciton) state-density formulas used in precompound nuclear reaction theories are, strictly speaking, dependent on the nuclear excitation energy U and the exciton number n. A general formula for (U, n)-dependent pairing corrections was derived earlier for the exciton state-density formula for a system of one kind of fermion. A similar derivation is made for a system of two kinds of fermions, a system in which neutrons and protons occupy different sets of single-particle states. It is shown that the constant-pairing-energy correction used in standard statedensity formulas, such as U0 in Gilbert and Cameron, is a limiting case of the present general (U, n)-dependent results. Spin cutoff factors are calculated using the same pairing theory and parameterized into an explicit (U, n)-dependent function, thereby defining the exciton level-density formula for two kinds of fermions. The results show that the ratios in the exciton level densities in the one- and two-fermion approaches vary with both U and n, thus, most likely leading to differences in calculated compound-to-precompound ratios. However, the differences in the spin cutoff factors in the two cases are found to be rather small.