ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE on track to deliver high-burnup SNF to Idaho by 2027
The Department of Energy said it anticipated delivering a research cask of high-burnup spent nuclear fuel from Dominion Energy’s North Anna nuclear power plant in Virginia to Idaho National Laboratory by fall 2027. The planned shipment is part of the High Burnup Dry Storage Research Project being conducted by the DOE with the Electric Power Research Institute.
As preparations continue, the DOE said it is working closely with federal agencies as well as tribal and state governments along potential transportation routes to ensure safety, transparency, and readiness every step of the way.
Watch the DOE’s latest video outlining the project here.
G. C. Pomraning
Nuclear Science and Engineering | Volume 108 | Number 4 | August 1991 | Pages 325-330
Technical Paper | doi.org/10.13182/NSE91-A23831
Articles are hosted by Taylor and Francis Online.
Within the context of one-group diffusion theory, we discuss the effect of randomness (stochasticity) on the criticality of a bare nuclear reactor. Previous authors have concluded that randomness decreases the critical size for a given amount of fuel, and that such randomness, when in-troduced into a homogeneous critical reactor, leads most probably to a supercritical state. By considering a sufficiently simple stochastic problem so that exact results can be obtained, we judge these prior conclusions to be only partially correct. We show that the effect of randomness on a criticality problem depends on both the nature of the randomness and the ensemble-averaging procedure and interpretation used to describe the reactor in the stochastic setting.