ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Senate committee hears from energy secretary nominee Chris Wright
Wright
Chris Wright, president-elect Trump’s pick to lead the U.S. Department of Energy, spent hours today fielding questions from members of the U.S. Senate’s committee on Energy and Natural Resources.
During the hearing, Wright—who’s spent most of his career in fossil fuels—made comments in support of nuclear energy and efforts to expand domestic generation in the near future. Asked what actions he would take as energy secretary to improve the development and deployment of SMRs, Wright said: “It’s a big challenge, and I’m new to government, so I can’t list off the five levers I can pull. But (I’ve been in discussions) about how to make it easier to research, to invest, to build things. The DOE has land at some of its facilities that can be helpful in this regard.”
Yasuki Kowata , Nobuo Fukumura
Nuclear Science and Engineering | Volume 108 | Number 3 | July 1991 | Pages 308-318
Technical Note | doi.org/10.13182/NSE91-A23828
Articles are hosted by Taylor and Francis Online.
The effects on coolant void reactivity from soluble poison and from control rods inserted into the moderator of a light-water-cooled pressure-tube-type heavy water reactor (HWR) are studied in experiments and theoretical analyses. The soluble neutron absorber is 10B burnable poison uniformly dissolved in the moderator, and the boron carbide control rods are inserted into the moderator vertically between fuel channels. The reactivity caused by the increased void fraction is measured in the deuterium critical assembly (DCA). The void reactivity becomes less negative with the soluble neutron absorber, and the change is nearly proportional to the concentration of poison. The void reactivity is not as dependent on the number of control rods inserted, and the incremental positive shift lessens with increasing control rod worth. Experimental and calculated (WIMS-D4 code) results agree within ±1 $., The effects on void reactivity caused by the neutron absorbers are investigated by perturbation analysis. Neutrons are easily thermalized by light water in the pressure tube at lower void fractions, and some diffuse into the heavy water moderator. More thermal neutrons are absorbed in the heavy water in the presence of an absorber than with a higher void fraction.