ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE on track to deliver high-burnup SNF to Idaho by 2027
The Department of Energy said it anticipated delivering a research cask of high-burnup spent nuclear fuel from Dominion Energy’s North Anna nuclear power plant in Virginia to Idaho National Laboratory by fall 2027. The planned shipment is part of the High Burnup Dry Storage Research Project being conducted by the DOE with the Electric Power Research Institute.
As preparations continue, the DOE said it is working closely with federal agencies as well as tribal and state governments along potential transportation routes to ensure safety, transparency, and readiness every step of the way.
Watch the DOE’s latest video outlining the project here.
R. P. Gardner, M. Mickael, M. Oraby, K. Verghese
Nuclear Science and Engineering | Volume 108 | Number 3 | July 1991 | Pages 240-246
Technical Paper | doi.org/10.13182/NSE91-A23822
Articles are hosted by Taylor and Francis Online.
A general direction biasing approach for Monte Carlo scattering simulation in a laboratory system, previously applied to neutron scattering for all elements except hydrogen for isotropic center-of-mass scattering, is applied to hydrogen. (Neutron scattering with hydrogen represents a unique problem in direction biasing, in that only scattering at angles <π/2 are allowable.) The pertinent relationships are derived and sample results are given for problems of practical importance in neutron porosity well logging. (Note that this problem is significantly different from neutron shielding problems in that detection is favored for thermal neutrons in this case, while escape occurs at all energies in the shielding problem.) The use of neutron hydrogen scattering direction biasing gives the same results in the problems treated as when it is not used, indicating that the treatment is valid. However, for the approach of fixing the direction biasing parameters throughout a neutron history, the addition of hydrogen direction biasing only slightly improves the Monte Carlo figure of merit, and then only when very moderate biasing is used. It is likely that the optimum use of neutron hydrogen scattering direction biasing (at least for the neutron porosity well logging problem) will involve a more complex approach, such as tailoring the severity of the biasing to the remainder of the average neutron path length available, or, in general, to the established importance sampling technique relating to where the neutron resides in phase-space.