ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
Sudip S. Dosanjh, Martin Pilch
Nuclear Science and Engineering | Volume 108 | Number 2 | June 1991 | Pages 172-183
Technical Paper | doi.org/10.13182/NSE91-A23815
Articles are hosted by Taylor and Francis Online.
During hypothetical severe nuclear reactor accidents, structural materials in the reactor vessel can relocate downward and form debris regions above the lower head. A one-dimensional model is presented that considers melt progression in the debris as well as the thermal and mechanical response of the head. Only creep rupture of the lower head is considered; however, other modes of vessel failure can be considered with the methodology developed, and the model can easily be extended to higher dimensions. Numerical solutions are compared with an analytical model developed by T G. Theofanous. The goal of the work is to identify the parameters that most affect the state of the debris at the time of lower head creep rupture. Results of sensitivity analyses presented indicate that melt relocation phenomena, the initial composition profile of the debris, and the pressure inside the vessel are all important. On the other hand, changing the porosity or the particle diameter produces less significant effects because several competing phenomena cancel each other.