ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
W. Breitung
Nuclear Science and Engineering | Volume 108 | Number 1 | May 1991 | Pages 1-15
Technical Paper | doi.org/10.13182/NSE91-A23804
Articles are hosted by Taylor and Francis Online.
Measurements of the total pressure from irradiated (U,Pu)-mixed oxide were analyzed with respect to the fission product release kinetics and availability for pressure generation in Bethe-Tait excursions. Two pressure sources acting on a millisecond time scale were identified: release of grain boundary fission products (gases and volatiles such as cesium) triggered by grain boundary separation and release of formerly intragranular fission products due to fuel boiling. The former process can provide pressures on a megapascal scale early, and the latter process, late in the accident progression. No fission product release was observed from nonboiling liquid fuel. Based on the experimental data, a model was formulated for the total pressure over irradiated (U,Pu)-oxide. Fuel vapor and gases interact by a suppression mechanism: pIF = max(pAG + pFP, psat). The total pressure over irradiated fuel pIF is equal to the pressure sum from ambient gas pAG and released fission products in the gaseous state pFP when this sum is greater than the saturation vapor pressure of fresh (U,Pu)-oxide psat. In this regime, fuel boiling is suppressed. At sufficiently high temperatures when psat > pAG + pFP, the oxide begins to boil and the total pressure pIF reaches the fresh fuel saturation vapor pressure psat. The switch-over in the controlling mechanism occurred at ∼5200 K.