ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Commonwealth Fusion Systems partners with Google DeepMind
Google DeepMind—Google’s artificial intelligence development subsidiary—recently announced a new partnership with fusion start-up Commonwealth Fusion Systems. The goal of this collaboration is to leverage AI to both advance plasma simulation and discover novel control strategies, ultimately accelerating CFS’s timeline to deliver commercial fusion to the grid.
Russell D. Mosteller, Laurence D. Eisenhart, Robert C. Little, Walter J. Eich, Jason Chao
Nuclear Science and Engineering | Volume 107 | Number 3 | March 1991 | Pages 265-271
Technical Paper | doi.org/10.13182/NSE91-A23789
Articles are hosted by Taylor and Francis Online.
The Doppler coefficient of reactivity is a crucial parameter in the evaluation of several transients in light water reactors (LWRs). It is relatively small in magnitude and cannot be measured directly in operating reactors. Doppler coefficients are presented for slightly idealized pressurized water reactor pin cells. These coefficients were calculated with the MCNP-3A continuous-energy Monte Carlo code using data taken directly from the ENDF/B-V nuclear data library. This combination represents the most rigorous analytical tool and the best nuclear data available. Consequently, these results comprise a set of numerical benchmarks that may be used to evaluate the accuracy of LWR lattice physics codes in predicting Doppler behavior at operating conditions. An example of one such evaluation, using the CELL-2 code, is included.