ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
OECD NEA meeting focuses on irradiation experiments
Members of the OECD Nuclear Energy Agency’s Second Framework for Irradiation Experiments (FIDES-II) joint undertaking gathered from September 29 to October 3 in Ketchum, Idaho, for the technical advisory group and governing board meetings hosted by Idaho National Laboratory. The FIDES-II Framework aims to ensure and foster competences in experimental nuclear fuel and structural materials in-reactor experiments through a diverse set of Joint Experimental Programs (JEEPs).
Bernard I. Spinrad, Zekeriya Altaç
Nuclear Science and Engineering | Volume 106 | Number 4 | December 1990 | Pages 480-488
Technical Paper | doi.org/10.13182/NSE90-A23772
Articles are hosted by Taylor and Francis Online.
The SKN approximation is slightly altered to solve the integral transport equation for heterogeneous systems. The original formulation of the SKN approximation has a defect when applied to heterogeneous problems. We propose a correction technique for such problems, which can also be applied to problems with P1 scattering. Such modified SKN equations are derived and tested for benchmark problems in one-dimensional geometries, which contain strong heterogeneities. Two-dimensional heterogeneous problems are solved using the unaltered SKN method with naive boundary conditions to determine how much heterogeneity can be tolerated before the remedy is necessary.