ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
H. Vonach, A. Pavlik, B. Strohmaier
Nuclear Science and Engineering | Volume 106 | Number 4 | December 1990 | Pages 409-414
Technical Paper | doi.org/10.13182/NSE90-A23766
Articles are hosted by Taylor and Francis Online.
It is demonstrated that (n,2n) cross sections for many medium-mass and heavy nuclei can be determined with high accuracy (∼3%) from existing data on nonelastic cross sections and energy-differential neutron emission cross sections. Using this method, the (n,2n) cross sections for 93Nb, 209Bi, and the natural elements tantalum, tungsten, and lead are determined for a neutron energy of 14 A MeV. There is reasonable agreement with the existing measurements; however, our results considerably reduce the uncertainties of these cross sections. For lead, which is especially important as a possible neutron multiplier material in fusion reactors, the accuracy requested for this purpose is achieved. It is further demonstrated that the peak values of the (n,2n) excitation functions for heavy nuclei (A > 190) show a very smooth behavior with mass number, which allows prediction of unknown (n,2n) cross sections with accuracies better than 3%.