ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
K. R. Elam, B. T. Rearden
Nuclear Science and Engineering | Volume 145 | Number 2 | October 2003 | Pages 196-212
Technical Paper | doi.org/10.13182/NSE03-A2376
Articles are hosted by Taylor and Francis Online.
Sensitivity and uncertainty analysis methodologies under development at Oak Ridge National Laboratory were applied to determine whether existing benchmark experiments adequately cover the area of applicability for the criticality code and data validation of PuO2 and mixed-oxide (MOX) powder systems. The study examined three PuO2 powder systems and four MOX powder systems that would be useful for establishing mass limits for a MOX fuel fabrication facility. Using traditional methods to choose experiments for criticality analysis validation, 46 benchmark critical experiments were identified as applicable to the PuO2 powder systems. However, only 14 experiments were thought to be within the area of applicability for dry MOX powder systems.The applicability of 318 benchmark critical experiments, including the 60 experiments initially identified, was assessed. Each benchmark and powder system was analyzed using the Tools for Sensitivity and UNcertainty Analysis Methodology Implementation (TSUNAMI) one-dimensional (TSUNAMI-1D) or TSUNAMI three-dimensional (TSUNAMI-3D) sensitivity analysis sequences, which will be included in the next release of the SCALE code system. This sensitivity data and cross-section uncertainty data were then processed with TSUNAMI-IP to determine the correlation of each application to each experiment in the benchmarking set. Correlation coefficients are used to assess the similarity between systems and determine the applicability of one system for the code and data validation of another.The applicability of most of the experiments identified using traditional methods was confirmed by the TSUNAMI analysis. In addition, some PuO2 and MOX powder systems were determined to be within the area of applicability of several other benchmarks that would not have been considered using traditional methods. Therefore, the number of benchmark experiments useful for the validation of these systems exceeds the number previously expected. The TSUNAMI analysis also emphasized some areas where more benchmark data are needed, indicating the need for further evaluation of existing experiments, or possibly the completion of new experiments to fill these gaps. This lack of evaluated data is particularly important for very dry and dense MOX powder systems.