ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
John R. White, Glenn A. Swanbon
Nuclear Science and Engineering | Volume 105 | Number 2 | June 1990 | Pages 160-173
Technical Paper | doi.org/10.13182/NSE90-A23745
Articles are hosted by Taylor and Francis Online.
The development of a practical approach to higher order generalized perturbation theory (GPT) methods is documented. The method combines a direct correlation technique for obtaining a first-order estimate of the perturbed flux distribution with an explicit representation of second-order GPT for obtaining improved predictions of perturbed integral responses. The technique is easy to use and it does not require extensive methods development efforts; it simply relies on the manipulation of data from several direct perturbation runs and several adjoint computations (and this step can be fully automated). Demonstration cases using a pressurized water reactor benchmark model have verified the adequacy of the method for improving the practicality of using GPT in design applications. The best success to date has been for cases where only a few large localized variations are made. When changes are made at several locations throughout the model, the cancellation of large positive and negative effects tends to introduce increased error in the flux estimates. Current efforts are focused on methods to mitigate some of this numerical cancellation. Overall, the method shows good promise for improving on the use of first-order GPT for application to the core reload design problem.