ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
John R. White, Glenn A. Swanbon
Nuclear Science and Engineering | Volume 105 | Number 2 | June 1990 | Pages 160-173
Technical Paper | doi.org/10.13182/NSE90-A23745
Articles are hosted by Taylor and Francis Online.
The development of a practical approach to higher order generalized perturbation theory (GPT) methods is documented. The method combines a direct correlation technique for obtaining a first-order estimate of the perturbed flux distribution with an explicit representation of second-order GPT for obtaining improved predictions of perturbed integral responses. The technique is easy to use and it does not require extensive methods development efforts; it simply relies on the manipulation of data from several direct perturbation runs and several adjoint computations (and this step can be fully automated). Demonstration cases using a pressurized water reactor benchmark model have verified the adequacy of the method for improving the practicality of using GPT in design applications. The best success to date has been for cases where only a few large localized variations are made. When changes are made at several locations throughout the model, the cancellation of large positive and negative effects tends to introduce increased error in the flux estimates. Current efforts are focused on methods to mitigate some of this numerical cancellation. Overall, the method shows good promise for improving on the use of first-order GPT for application to the core reload design problem.