ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
Rizwan-uddin, J. J. Dorning
Nuclear Science and Engineering | Volume 105 | Number 2 | June 1990 | Pages 123-135
Technical Paper | doi.org/10.13182/NSE90-A23742
Articles are hosted by Taylor and Francis Online.
The nonlinear periodic, quasi-periodic, and chaotic dynamics of a two-phase flow system are studied. The system comprises a vertical channel, heated through its side walls, into which a subcooled liquid enters at the bottom and a two-phase vapor-liquid mixture exits from the top. The system, which is driven by three time-dependent forcing functions (the variable inlet enthalpy, sidewall heat flux, and channel pressure drop), is studied as a nonautonomous nonlinear dynamical system. The numerical scheme used is developed by integrating some of the partial differential equations, first along their characteristics and then along the channel length. The resulting nonlinear functional differential equations are then solved using a special-purpose second-order numerical scheme that treats the complicated nonlinear multiple delay integrals that arise. The results of the numerical simulations and the subsequent analyses show that the nonlinear dyanamics of a nonautonomous heated channel are quite complicated and that this simple system can exhibit periodic, quasi-periodic, and quite frequently chaotic density wave oscillations.