ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Inkjet droplets of radioactive material enable quick, precise testing at NIST
Researchers at the National Institute of Standards and Technology have developed a technique called cryogenic decay energy spectrometry capable of detecting single radioactive decay events from tiny material samples and simultaneously identifying the atoms involved. In time, the technology could replace characterization tasks that have taken months and could support rapid, accurate radiopharmaceutical development and used nuclear fuel recycling, according to an article published on July 8 by NIST.
Yasuyoshi Kato, Hiroshi Urushihara
Nuclear Science and Engineering | Volume 104 | Number 4 | April 1990 | Pages 385-395
Technical Paper | doi.org/10.13182/NSE90-A23736
Articles are hosted by Taylor and Francis Online.
The coarse space-energy mesh rebalancing method is studied for the purpose of convergence acceleration on two-dimensional multigroup neutron diffusion calculations with a seven-point finite difference scheme, a uniform triangular mesh, and an arbitrary scattering matrix. The rebalancing method provides convergences without numerical instability for a range of fast reactor problems with varying numbers of neutron energy groups and mesh points. The number of outer iterations is decreased with the rebalancing method by a factor of 2 in comparison to the case when only asymptotic fission source extrapolation and successive overrelaxation acceleration techniques are applied. With the rebalancing method, the HIVER code solves the problems 5 to 20 times faster than the existing reference CITA TION code. The relative calculation speed of the reference code increases with the problem size.