ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
Charles J. Call, Ralph W. Moir
Nuclear Science and Engineering | Volume 104 | Number 4 | April 1990 | Pages 364-373
Technical Paper | doi.org/10.13182/NSE90-A23734
Articles are hosted by Taylor and Francis Online.
Modifications to an old concept for using peaceful nuclear explosions to achieve practical fusion power are discussed. With this concept, useful energy and materials are obtained by repetitively setting off nuclear explosions in an underground cavity. This proposal, which is based on molten-salt technology, involves two modifications:, Line the cavity with steel to make it engineerable and predictable rather than relying on an unsupported earthen cavity such as a cavity excavated in a salt dome. Use molten salt rather than steam. More than 70% of the energy released is then absorbed by liquid-salt evaporation, and the pressure to be contained for a given yield can be reduced by a factor of 3 or more. These modifications result in several improvements in the safety and feasibility of the contained fusion concept:, The tritium produced, being insoluble in the molten salt, can easily be pumped away and purified when all the vaporized salt condenses, rather than being mixed with steam. The tritium inventory is substantially reduced, effectively reducing the large hazard in case of accidental venting to the atmosphere. Reducing the yield used in the older studies could reduce the cost of the cavity considerably. These improvements may make the concept practical today, and a reexamination of the concept appears in order.