A diffusion iterative scheme has been developed to analyze the basic three-dimensional supercell problem encountered in pressurized heavy water reactors (PHWRs). Multigroup transport calculations are performed essentially in one dimension for the fuel cluster cell and the reactivity device (RD) supercell problems. Iterative diffusion calculations are done in one and two dimensions such that the net transport leakages into the fuel cluster or RD are reproduced. The few-group parameters of the fuel cluster or the boundary conditions on the RD surface are modified for this purpose. With these modifications, the three-dimensional supercell problem is treated by diffusion theory. The accuracy of the new scheme is demonstrated against the corresponding transport solutions in both one and three dimensions. A half-bundle-sized constant mesh is proposed for core diffusion analyses. Since the RDs in a PHWR are rather arbitrarily located, it is difficult to perturb the lattice parameters of controlled meshes properly when a constant mesh size is employed. A flux-related weighting scheme is devised to distribute the δ∑’s in meshes falling within the zone of influence of an RD. This core model is compared with a direct method where the supercell concept is avoided and RDs are simulated by internal boundary conditions directly in the core diffusion simulation. Analysis of certain low-power criticals provides the experimental validation of the calculational schemes.