ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
PR: American Nuclear Society welcomes Senate confirmation of Ted Garrish as the DOE’s nuclear energy secretary
Washington, D.C. — The American Nuclear Society (ANS) applauds the U.S. Senate's confirmation of Theodore “Ted” Garrish as Assistant Secretary for Nuclear Energy at the U.S. Department of Energy (DOE).
“On behalf of over 11,000 professionals in the fields of nuclear science and technology, the American Nuclear Society congratulates Mr. Garrish on being confirmed by the Senate to once again lead the DOE Office of Nuclear Energy,” said ANS President H.M. "Hash" Hashemian.
Ricardo C. De Barros, Edward W. Larsen
Nuclear Science and Engineering | Volume 104 | Number 3 | March 1990 | Pages 199-208
Technical Paper | doi.org/10.13182/NSE90-A23719
Articles are hosted by Taylor and Francis Online.
A numerical method that is free from all spatial truncation errors is developed for one-group slab-geometry discrete ordinates problems. The unknowns in the method are the cell-edge and cell-average angular fluxes, and the numerical values obtained for these quantities are those of the analytic solution of the discrete ordinates equations. The method is based on the use of the standard balance equation, which holds in each spatial cell and for each discrete ordinates direction, and a nonstandard auxiliary equation that contains a Green’s function for the cell-average angular flux in terms of the incident angular fluxes on the cell edges and the interior source. Numerical results are given to illustrate the method’s accuracy.