ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
T. G. Williamson, G. P. Lamaze, D. M. Gilliam, C. M. Eisenhauer
Nuclear Science and Engineering | Volume 104 | Number 1 | January 1990 | Pages 46-52
Technical Paper | doi.org/10.13182/NSE90-A23701
Articles are hosted by Taylor and Francis Online.
Photofission measurements have been made in 238U, 232Th, and 237Np in iron and cadmium capture gamma-ray spectra in cylindrical neutron-driven gamma-ray sources in the thermal column of the National Bureau of Standards (NBS) Reactor. The gamma-ray source strength was measured with neutron activation foils and by direct counting of activations produced in the metal cylinders. Photofission measurements were made with NBS miniature fission chambers. The integral photofission cross sections were compared with differential measurements by integrating the capture gamma-ray spectra with measured cross-section shapes. The integral cross sections measured in the capture gamma-ray fields are lower than the cross sections calculated from measured differential data.