ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
Y. A. Chao, P. Huang
Nuclear Science and Engineering | Volume 103 | Number 4 | December 1989 | Pages 415-419
Technical Paper | doi.org/10.13182/NSE89-A23693
Articles are hosted by Taylor and Francis Online.
A superfast, multidimensional, and compact pressurized water reactor nodal code, SUPERNOVA (SPNOVA), which is much faster than conventional nodal codes and is very accurate, has been developed at Westinghouse Electric Corporation. A kinetics version of this code, SPNOVA-K, is now developed for applications to three-dimensional core kinetics analysis. The theory involved in the kinetics generalization of SPNOVA is discussed and the performance of SPNOVA-K is described. SPNOVA-K adopts the stiffness confinement method of time variable discretization. This method can provide a very stable solution against the size of the discrete time step, allowing much larger step sizes to be used.