ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
Hrabri L. Rajic, Abderrafi M. Ougouag
Nuclear Science and Engineering | Volume 103 | Number 4 | December 1989 | Pages 392-408
Technical Paper | doi.org/10.13182/NSE89-A23691
Articles are hosted by Taylor and Francis Online.
A nodal multigroup neutron diffusion method for modern computer architectures has been developed and implemented in the ILLICO code. Vectorization and parallelization strategies that are successful in speeding up modern nodal computations on commercially available supercomputers have been identified and applied. Realistic three-dimensional benchmark problems can be solved in the vectorized mode in <0.73 s (33.86 Mflops). Vector-concurrent implementations are shown to yield speedups as high as 9.19 on eight processors. These results demonstrate that modern nodal methods, such as ILLICO, can preserve essentially all of their speed advantages (demonstrated on scalar computers) over finite difference methods. Several ways of treating two-dimensional reactor problems with nonsquare (“jagged”) boundaries as rectangular domain problems are presented and their effectiveness evaluated. They result in nonnegligible performance improvements and can be devised so as to preserve the physics of the initial problem.