ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
M. R. Wagner
Nuclear Science and Engineering | Volume 103 | Number 4 | December 1989 | Pages 377-391
Technical Paper | doi.org/10.13182/NSE89-A23690
Articles are hosted by Taylor and Francis Online.
Advanced nodal methods for the solution of the multigroup neutron diffusion and transport theory equations in three-dimensional hexagonal-z geometry are described. The code HEXNOD allows an accurate and efficient calculation of three-dimensional problems for fast reactors and high converter light water reactors. A unique capability of HEXNOD is the accurate solution of global three-dimensional neutron transport problems for fast reactors with very small computing times. The accuracy of the nodal diffusion and transport approximations is demonstrated by comparison with conventional finite difference methods and Monte Carlo calculations for a number of mathematical benchmark problems. Based on numerical results, it is concluded that the code HEXNOD is well suited for three-dimensional routine analysis of fast reactors and, in particular, as the neutronics module of the generalized quasi-static kinetics program HEXNODYN, which is currently being developed as part of the European accident code EAC-2.