ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
ARG-US Remote Monitoring Systems: Use Cases and Applications in Nuclear Facilities and During Transportation
As highlighted in the Spring 2024 issue of Radwaste Solutions, researchers at the Department of Energy’s Argonne National Laboratory are developing and deploying ARG-US—meaning “Watchful Guardian”—remote monitoring systems technologies to enhance the safety, security, and safeguards (3S) of packages of nuclear and other radioactive material during storage, transportation, and disposal.
Toshihiro Yamamoto, Yoshinori Miyoshi, Takehide Kiyosumi
Nuclear Science and Engineering | Volume 145 | Number 1 | September 2003 | Pages 132-144
Technical Paper | doi.org/10.13182/NSE03-A2369
Articles are hosted by Taylor and Francis Online.
Evaluated criticality benchmark data obtained at the Static Criticality Experiment Facility (STACY) account for a large percentage of low-enriched uranium (LEU) solution systems documented in the "International Handbook of Evaluated Criticality Safety Benchmark Experiments." These data are available for validation of computer codes and nuclear data used for criticality safety analyses of LEU solution systems. The calculated keff's for the water-reflected STACY criticality experiments have been overestimated with JENDL-3.2 by ~0.7%. These overestimations were kept in mind while making modifications of the fission spectrum and the fission cross section of 235U, and the (n,p) cross section of 14N in JENDL-3.3. Because of these modifications, the keff's calculated with JENDL-3.3 were largely improved. The contributions of these modifications in JENDL-3.3 with respect to JENDL-3.2 and ENDF/B-VI.5 were investigated by performing perturbation calculations. The overestimation of the elastic-scattering cross section of 56Fe in the mega-electron-volt range was one of the reasons for the keff overestimations for the STACY experiments with JENDL-3.2. The modification of 56Fe cross sections in JENDL-3.3 reduces keff's in the STACY experiments by 0.2%. The dependence of calculated keff's on uranium concentration still exists in JENDL-3.3. The overestimation of calculated keff's for the STACY experiments with JENDL-3.3 is not insignificant and is as much as 0.6%. These problems are to be resolved in a future evaluation of the cross-section library.