ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
R. N. Hill, K. O. Ott
Nuclear Science and Engineering | Volume 103 | Number 1 | September 1989 | Pages 12-24
Technical Paper | doi.org/10.13182/NSE89-A23656
Articles are hosted by Taylor and Francis Online.
A review of worldwide results reveals that reaction rates in the blanket region are generally underpredicted with the discrepancy increasing with penetration; however, these results vary widely. Experiments in the large uniform Purdue University Fast Breeder Blanket Facility blanket yield an accurate quantification of this discrepancy. Using standard production code methods (diffusion theory with 50-group cross sections), a consistent calculated-to-experimental (C/E) drop-off is observed for various reaction rates. A 50% increase in the calculated results at the outer edge of the 51-cm blanket is necessary for agreement with experiments. The usefulness of refined group constant generation, utilizing specialized weighting spectra, and transport theory methods in correcting this discrepancy is analyzed. Refined group constants reduce the discrepancy to half that observed using the standard method. The surprising result is that transport methods have no effect on the blanket deviations; thus, the present multigroup transport theory does not constitute or even contribute to an explanation of the blanket discrepancies. The residual blanket C/E drop-off (about half the standard drop-off) using advanced methods must be caused by approximations that are applied in all current multigroup methods.