ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Researchers use one-of-a-kind expertise and capabilities to test fuels of tomorrow
At the Idaho National Laboratory Hot Fuel Examination Facility, containment box operator Jake Maupin moves a manipulator arm into position around a pencil-thin nuclear fuel rod. He is preparing for a procedure that he and his colleagues have practiced repeatedly in anticipation of this moment in the hot cell.
K. D. Marx
Nuclear Science and Engineering | Volume 102 | Number 4 | August 1989 | Pages 391-407
Technical Paper | doi.org/10.13182/NSE89-A23650
Articles are hosted by Taylor and Francis Online.
A computer model is described that simulates the effects of releasing molten debris into a gas-filled container. This work is motivated by studies of direct containment heating due to the dispersal of debris produced in certain nuclear reactor accident scenarios. The model consists of a finite difference scheme for the gas flow coupled with a Lagrangian particle transport algorithm. It computes the transport of the debris through the gas and evaluates radiative and convective heat transfer effects. It also accounts for the chemical reaction of the debris with the oxygen in the atmosphere, including the concurrent heat release. The computer code is used to simulate experiments in the Surtsey Direct Heating Test Facility. Computational results are compared with those obtained from experiments with small and large debris input mass. It is shown that the simulation of configurations with large debris mass can be improved with better submodels to describe the debris behavior. The description of the interaction of the debris with the container walls is of particular importance.