ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Inkjet droplets of radioactive material enable quick, precise testing at NIST
Researchers at the National Institute of Standards and Technology have developed a technique called cryogenic decay energy spectrometry capable of detecting single radioactive decay events from tiny material samples and simultaneously identifying the atoms involved. In time, the technology could replace characterization tasks that have taken months and could support rapid, accurate radiopharmaceutical development and used nuclear fuel recycling, according to an article published on July 8 by NIST.
K. D. Marx
Nuclear Science and Engineering | Volume 102 | Number 4 | August 1989 | Pages 391-407
Technical Paper | doi.org/10.13182/NSE89-A23650
Articles are hosted by Taylor and Francis Online.
A computer model is described that simulates the effects of releasing molten debris into a gas-filled container. This work is motivated by studies of direct containment heating due to the dispersal of debris produced in certain nuclear reactor accident scenarios. The model consists of a finite difference scheme for the gas flow coupled with a Lagrangian particle transport algorithm. It computes the transport of the debris through the gas and evaluates radiative and convective heat transfer effects. It also accounts for the chemical reaction of the debris with the oxygen in the atmosphere, including the concurrent heat release. The computer code is used to simulate experiments in the Surtsey Direct Heating Test Facility. Computational results are compared with those obtained from experiments with small and large debris input mass. It is shown that the simulation of configurations with large debris mass can be improved with better submodels to describe the debris behavior. The description of the interaction of the debris with the container walls is of particular importance.