ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Senate committee hears from energy secretary nominee Chris Wright
Wright
Chris Wright, president-elect Trump’s pick to lead the U.S. Department of Energy, spent hours today fielding questions from members of the U.S. Senate’s committee on Energy and Natural Resources.
During the hearing, Wright—who’s spent most of his career in fossil fuels—made comments in support of nuclear energy and efforts to expand domestic generation in the near future. Asked what actions he would take as energy secretary to improve the development and deployment of SMRs, Wright said: “It’s a big challenge, and I’m new to government, so I can’t list off the five levers I can pull. But (I’ve been in discussions) about how to make it easier to research, to invest, to build things. The DOE has land at some of its facilities that can be helpful in this regard.”
K. D. Marx
Nuclear Science and Engineering | Volume 102 | Number 4 | August 1989 | Pages 391-407
Technical Paper | doi.org/10.13182/NSE89-A23650
Articles are hosted by Taylor and Francis Online.
A computer model is described that simulates the effects of releasing molten debris into a gas-filled container. This work is motivated by studies of direct containment heating due to the dispersal of debris produced in certain nuclear reactor accident scenarios. The model consists of a finite difference scheme for the gas flow coupled with a Lagrangian particle transport algorithm. It computes the transport of the debris through the gas and evaluates radiative and convective heat transfer effects. It also accounts for the chemical reaction of the debris with the oxygen in the atmosphere, including the concurrent heat release. The computer code is used to simulate experiments in the Surtsey Direct Heating Test Facility. Computational results are compared with those obtained from experiments with small and large debris input mass. It is shown that the simulation of configurations with large debris mass can be improved with better submodels to describe the debris behavior. The description of the interaction of the debris with the container walls is of particular importance.