ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Keisuke Okumura, Kojiro Nishina
Nuclear Science and Engineering | Volume 102 | Number 4 | August 1989 | Pages 381-390
Technical Paper | doi.org/10.13182/NSE89-A23649
Articles are hosted by Taylor and Francis Online.
By cell calculation with the SRAC code system, void reactivity is evaluated for a high conversion light water reactor tight lattice, with an emphasis on the breakdown of the void effect into component nuclides, nuclear reactions, and energy groups. The analysis is restricted to infinite lattices and deals with the consequence of neutron energy spectrum shifts caused by void.In a preliminary parameter survey over various fissile plutonium enrichments, a 7.5 % enrichment is found approximately to border the negative and the positive coefficients, when the moderator channel volume to fuel volume Vm/Vf is fixed at a typical value of 0.53. With this combination of the enrichment and Vm/Vf values fixed, the reactivity effect for an incremental void increase is analyzed in detail at low-void conditions (0 to 10%) and at high-void conditions (95 to 100%).At low-void conditions, the 238U contribution is negative by the capture increase in the kilo-electron-volt range, whereas the 240Pu and 242Pu contributions proved to be positive by the capture decrease in the 0.1- to 10-eV range. At high-void conditions, on the other hand, 239Pu makes a positive contribution, originating from (a) the fission increase in the 50-eV to 1-MeV range dominating over the fission decrease in the 10- to 50-eV range, and (b) the lower capture-to-fission ratio above 10 keV. Such a positive contribution of 239Pu is in contrast to the negative contribution of 235U in a highly voided pressurized water reactor lattice. Americium-241 generated by the decay of 241 Pu makes a positive contribution in both low- and high-void conditions. The breakdown of the void effect clearly illustrates the physical mechanism.