ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Senate committee hears from energy secretary nominee Chris Wright
Wright
Chris Wright, president-elect Trump’s pick to lead the U.S. Department of Energy, spent hours today fielding questions from members of the U.S. Senate’s committee on Energy and Natural Resources.
During the hearing, Wright—who’s spent most of his career in fossil fuels—made comments in support of nuclear energy and efforts to expand domestic generation in the near future. Asked what actions he would take as energy secretary to improve the development and deployment of SMRs, Wright said: “It’s a big challenge, and I’m new to government, so I can’t list off the five levers I can pull. But (I’ve been in discussions) about how to make it easier to research, to invest, to build things. The DOE has land at some of its facilities that can be helpful in this regard.”
L. B. Freeman, B. R. Beaudoin, R. A. Frederickson, G. L. Hartfield, H. C. Hecker, S. Milani, W. K. Sarber, W. C. Schick
Nuclear Science and Engineering | Volume 102 | Number 4 | August 1989 | Pages 341-364
Technical Paper | doi.org/10.13182/NSE89-A23647
Articles are hosted by Taylor and Francis Online.
The light water breeder reactor (LWBR) operated at the Shippingport Atomic Power Station from 1977 to 1982, serving the electric power grid for the Greater Pittsburgh area. The LWBR was a pressurized water reactor (PWR) with several unique features: It was designed and proved to be a breeder with an end-of-life fissile fuel content ∼1.3% greater than beginning of life; the reactor used the 233U-Th fuel system; and it had a large Doppler coefficient, low reactivity worth of transient xenon, and a significant reactivity effect from transient 233Pa. There were no control rods or soluble poison, and reactivity was controlled by movable fuel. Core operations went extremely well. The design lifetime of 18 000 effective full-power hours was exceeded by 60% by utilizing a gradual reduction in power level. The overall capacity factor was 65%. Physics experiments showed good agreement with predictions of movable fuel reactivity worth, most temperature coefficients, breeding, power distribution, and xenon stability. Unexpected results occurred in measurements of flow coefficient of reactivity, zero power temperature coefficients early in life, and bred fissile fuel distribution. The LWBR technology has demonstrated that water-cooled breeder reactors can operate in existing water power plants much like conventional PWRs.