ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
D. L. Henderson, C. W. Maynard
Nuclear Science and Engineering | Volume 102 | Number 2 | June 1989 | Pages 172-182
Technical Paper | doi.org/10.13182/NSE89-A23641
Articles are hosted by Taylor and Francis Online.
Time-dependent integral transport equation single-collision kernels for one-dimensional geometries corresponding to the steady-state single-collision kernels found in the available literature have been calculated by making use of the Laplace transform technique, simple geometric transformation relationships, and point kernel integrations. Using the convolution theorem, the time-dependent scalar flux is obtained by convoluting the single-collision kernel with the time-dependent source. Using the multiple collision formulation of the integral transport solution, isotropic sources that are delta distributions in time are considered in several examples. Analytical solutions for the uncollided and first-collided scalar fluxes are obtained for a boundary source having an isotropic angular distribution directed into a semi-infinite medium and into a slab of thickness b and for a point source at the origin of an infinite medium and finite sphere of radius a. A closed form solution is obtained for the simple problem of uniformly distributed sources within an infinite medium.