ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
Chaung Lin, Zhih Pao Lin, Wern Jiahn Jiang
Nuclear Science and Engineering | Volume 102 | Number 2 | June 1989 | Pages 134-139
Technical Paper | doi.org/10.13182/NSE89-A23638
Articles are hosted by Taylor and Francis Online.
A method based on a forward dynamic programming technique is applied to load-following control of a boiling water reactor. The control strategy obtained is optimal and satisfies operation constraints. A coarse-mesh, one-dimensional model using the two-group diffusion theory with Doppler, void, and xenon feedbacks is developed to reduce computer time. The control rods are assumed to be fixed during load maneuvers, and variations in core power are accomplished through core flow. An off-line daily load-following analysis needs ∼2000 CPU s on a PRIME 9950 computer. With some relaxation, computation time can be reduced to several hundred seconds. Thus, an on-line calculation that leads to an approximate closed-loop control is feasible.