ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Senate committee hears from energy secretary nominee Chris Wright
Wright
Chris Wright, president-elect Trump’s pick to lead the U.S. Department of Energy, spent hours today fielding questions from members of the U.S. Senate’s committee on Energy and Natural Resources.
During the hearing, Wright—who’s spent most of his career in fossil fuels—made comments in support of nuclear energy and efforts to expand domestic generation in the near future. Asked what actions he would take as energy secretary to improve the development and deployment of SMRs, Wright said: “It’s a big challenge, and I’m new to government, so I can’t list off the five levers I can pull. But (I’ve been in discussions) about how to make it easier to research, to invest, to build things. The DOE has land at some of its facilities that can be helpful in this regard.”
K. V. Subbaiah, A. Natarajan, D. V. Gopinath
Nuclear Science and Engineering | Volume 101 | Number 4 | April 1989 | Pages 352-370
Technical Paper | doi.org/10.13182/NSE89-A23624
Articles are hosted by Taylor and Francis Online.
Modifications to the computational scheme of the existing slab geometry gamma-ray transport code ASFIT are introduced to facilitate the inclusion of coherent scattering contributions. The revised code is tested with two model problems and subsequently is used to investigate quantitatively the transport effects of coherent scattering as a function of the incident photon energy and the atomic number Z of the medium. The shield materials studied in this respect are beryllium, aluminum, iron, molybdenum, tin, tungsten, lead, and uranium, and the incident photon energies range between 0.015 and 0.3 MeV. The system studied is a 48-mfp-thick slab, embedding a thin strip of isotropic source located 4 mfp from the left boundary. Plane parallel incident fluxes have also been studied in certain instances. The results of the computation are presented in the form of scattered flux spectra and dose rates, both at several depths inside the media. Tables of point isotropic source buildup factors including coherent scattering are also presented. It is observed that the addition of coherent scattering does not alter the shape of the flux spectrum significantly, but changes only the magnitude. Except for a small distance near the source, these changes in flux and hence dose are downward at all depths, becoming appreciable at large depths. Furthermore, the magnitude of the reduction varies essentially according to the ratio of the coherent scattering to the total cross section (ΣR/Σt)