ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
K. V. Subbaiah, A. Natarajan, D. V. Gopinath
Nuclear Science and Engineering | Volume 101 | Number 4 | April 1989 | Pages 352-370
Technical Paper | doi.org/10.13182/NSE89-A23624
Articles are hosted by Taylor and Francis Online.
Modifications to the computational scheme of the existing slab geometry gamma-ray transport code ASFIT are introduced to facilitate the inclusion of coherent scattering contributions. The revised code is tested with two model problems and subsequently is used to investigate quantitatively the transport effects of coherent scattering as a function of the incident photon energy and the atomic number Z of the medium. The shield materials studied in this respect are beryllium, aluminum, iron, molybdenum, tin, tungsten, lead, and uranium, and the incident photon energies range between 0.015 and 0.3 MeV. The system studied is a 48-mfp-thick slab, embedding a thin strip of isotropic source located 4 mfp from the left boundary. Plane parallel incident fluxes have also been studied in certain instances. The results of the computation are presented in the form of scattered flux spectra and dose rates, both at several depths inside the media. Tables of point isotropic source buildup factors including coherent scattering are also presented. It is observed that the addition of coherent scattering does not alter the shape of the flux spectrum significantly, but changes only the magnitude. Except for a small distance near the source, these changes in flux and hence dose are downward at all depths, becoming appreciable at large depths. Furthermore, the magnitude of the reduction varies essentially according to the ratio of the coherent scattering to the total cross section (ΣR/Σt)