ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
J. W. Park, S. K. Loyalka
Nuclear Science and Engineering | Volume 101 | Number 3 | March 1989 | Pages 269-279
Technical Paper | doi.org/10.13182/NSE101-269
Articles are hosted by Taylor and Francis Online.
The dynamic behavior of aerosols is of considerable interest in nuclear reactor source term studies. Because of the intractable nature of the dynamics, this behavior is studied through solutions of a spatially homogenized equation. There has been a need, however, to understand the effect of the homogenization process on the calculated aerosol distributions. To provide insight into the nature of the approximation and the accuracy of the results calculated with the homogenized (averaged) equations, some typical aerosol distribution problems are solved both with the spatially dependent and the homogenized versions of the aerosol dynamic equations. Comparisons of results show that while in some instances homogenization can be quite useful, there are realistic circumstances where it can lead to substantial deviations from accurate results as obtained by the equation that allows for spatial dependence of aerosol distribution.